The Paratenon Contributes to Scleraxis-Expressing Cells during Patellar Tendon Healing

نویسندگان

  • Nathaniel A. Dyment
  • Chia-Feng Liu
  • Namdar Kazemi
  • Lindsey E. Aschbacher-Smith
  • Keith Kenter
  • Andrew P. Breidenbach
  • Jason T. Shearn
  • Christopher Wylie
  • David W. Rowe
  • David L. Butler
چکیده

The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse. Normal adult patellar tendon consists of scleraxis-expressing (Scx) tendon fibroblasts situated among aligned collagen fibrils. The tendon body is surrounded by paratenon, which consists of a thin layer of cells that do not express Scx and collagen fibers oriented circumferentially around the tendon. At 3 days following injury, the paratenon thickens as cells within the paratenon proliferate and begin producing tenascin-C and fibromodulin. These cells migrate toward the defect site and express scleraxis and smooth muscle actin alpha by day 7. The thickened paratenon tissue eventually bridges the tendon defect by day 14. Similarly, cells within the periphery of the adjacent tendon struts express these markers and become disorganized. Cells within the defect region show increased expression of fibrillar collagens (Col1a1 and Col3a1) but decreased expression of tenogenic transcription factors (scleraxis and mohawk homeobox) and collagen assembly genes (fibromodulin and decorin). By contrast, early growth response 1 and 2 are upregulated in these tissues along with tenascin-C. These results suggest that paratenon cells, which normally do not express Scx, respond to injury by turning on Scx and assembling matrix to bridge the defect. Future studies are needed to determine the signaling pathways that drive these cells and whether they are capable of producing a functional tendon matrix. Understanding this process may guide tissue engineering strategies in the future by stimulating these cells to improve tendon repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lineage Tracing of Resident Tendon Progenitor Cells during Growth and Natural Healing

Unlike during embryogenesis, the identity of tissue resident progenitor cells that contribute to postnatal tendon growth and natural healing is poorly characterized. Therefore, we utilized 1) an inducible Cre driven by alpha smooth muscle actin (SMACreERT2), that identifies mesenchymal progenitors, 2) a constitutively active Cre driven by growth and differentiation factor 5 (GDF5Cre), a critica...

متن کامل

Temporal and Spatial Expression of TGF-b1 in the Early Phase of Patellar Tendon Healing after Application of Platelet Rich Plasma

   Background:The aim of this study is to find out the spatial and temporal expression of TGF-b1 during the tendon healing, after application of Platelet Rich Plasma (PRP). Methods: A patellar tendon defect model in rabbits was used for this purpose. 48 skeletally mature New Zealand White rabbits, weighing 3.5 kg, were used for this study. Equal numbers of animals from both groups were sacrific...

متن کامل

Expression of tenocyte lineage-related factors in regenerated tissue at sites of tendon defect

BACKGROUND The healing mechanism of ruptured or injured tendons is poorly understood. To date, some lineage-specific factors, such as scleraxis and tenomodulin, have been reported as markers of tenocyte differentiation. Because few studies have focused on tenocyte lineage-related factors with respect to the repaired tissue of healing tendons, the aim of this study was to investigate their expre...

متن کامل

A comparative study of fresh autogenous and preserved homogenous tendon grafts in rabbits.

The problems of repair and grafting of tendons have received considerable attention. However, conclusions have been hampered by lack of a standard terminology and by attempts to assign the origin oftendon, paratenon, and cicatrix to distinct types ofcell. The potentialities of cells under stress have been insufficiently recognised. Beltzow (1883), Viering (1891), Busse (1892), Rehn (1919) and S...

متن کامل

Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing.

Circulation-derived cells play a crucial role in the healing processes of tissue. In early phases of tendon healing processes, circulation-derived cells temporarily exist in the wounded area to initiate the healing process and decrease in number with time. We assumed that a delay of time-dependent decrease in circulation-derived cells could improve the healing of tendons. In this study, we inje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013